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Abstract Non-collinear spin configurations in an extemal magnetic field are widely studied but 
many features await a satisfactory understanding. The phase diagram for a three-sublattice 
configuration is known when the zero-field helix is supported either by lattice frustration 
or by exchange competition, but generic helix configurations need funher effort Here we 
consider the classical square planar model with competing exchange interaction up to third 
neighbours. In particular, we are interested in fhe helix configuration with the spin-spin mm 
angle Q = 3. for which we give a IOW-temperature expansion of the free energy within the 
harmonic approximation and Monte Carlo simulation. Our results suppotl lhe existence of a 
firstdrder helix-fan transition at finite temperatures for a field of about half lhe saturation field, 
in agreement with a previous guess based on zro-temperature energy calculation. 

1. Introduction 

The behaviour of interacting spin models with continuous symmetry in an extemal magnetic 
field is a topic of current interest [I]. A detailed analysis of the triangular planar 
antiferromagnetic (‘PA) and classical triangular Heisenberg antiferromagnet (TCHA) based 
on analytic low-temperature expansion of the free energy 121 and on Monte Carlo simulation 
131 has elucidated the complicated phase diagram in the H-T plane consisting of a distorted 
helix configuration, an ‘up-up-dow” phase and an asymmetric fan phase in addition to 
the paramagnetic saturated configuration. Analytic calculations based on the harmonic 
approximation [4] suggest that the phase diagram of the triangular quantum Heisenberg 
antiferromagnet (TQHA) is similar to that of the corresponding classical model (TCHA) even 
though at zero temperature the stabilization of the ‘upupdown’ phase for a finite range of 
H is assured by quantum fluctuations. In classical models [5] the ‘up-up-down’ phase is 
supported by thermal fluctuations. It is interesting that the TQHA is suitable for modelling 
CsCuCI,, an ABX3 hexagonal compound, where A is an alkali element, B is a transition- 
metal ion and X can be Cl, Br or I. Indeed the intrachain ferromagnetic spin-spin interaction 
does not cause qualitative peculiarities in the uniform mode energy so that the magnetic 
remnance data were satisfactorily fitted 161. We note that the phenomenology of the TPA 
and related models proves that the expectation based on the extrapolation to intermediate 
fields of the low- and high-field expansions of the zero temperature energy [71 is not always 
verified. A first-order ‘distorted helix-fan’ phase transition is indeed suggested as the 
generic scenario of helices in an extemal magnetic field 171 whereas in the WA the ‘up- 
updown’ phase intervenes in between the helix and the fan phase. A zero-temperature 
calculation of the energy and of the static structure factor, for both linear and square spin 
lattices [8,9] with a magnetic order commensurate with the underlying lattice, leads to a 
first-order distorted helix-fan phase transition only if the spin-spin tum angle Q is less 
than fr. Here we consider the 3N model [9,lO] (a square spin lattice with exchange 
interactions up to third neighbours) at finite temperature for exchange competition inducing 
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a regular helix with Q = $7 at zero temperature and zero field. Assuming that the 
commensuration with the underlying lattice survives the switching of the magnetic field, we 
have expanded the free energy near the classical minimum-energy configuration by keeping 
bilinear contributions and we have found that the low-temperature low-field configuration 
corresponds to a distorted helix with a spin over five parallel to the field. Note that the 
pinning of a generic commensurate helix in the low-temperature low-field limit is proven on 
the basis of an exact expansion [ 11 where singular delta-like commensuration contributions 
occur in a natural way. For the particular helix with Q = jr we obtain in section 2, 
the elementary excitation spectrum which is characterized by finiteenergy uniform modes 
when the magnetic field is not zero. The zero-temperature energy is characterized by a 
window of reduced magnetic field h ,  < h c h2 in which two minima are simultaneously 
present, one corresponding to a distorted helix, and the other to a symmetric fan. Both 
configurations have one spin over five parallel to the magnetic field. No other minima exist 
for configurations with five spins per magnetic cell. We have obtained the magnetization as 
a function of the magnetic field and temperature. The first-order helix-fan phase transition 
occurs at a critical value h, of the field which decreases with increasing temperature. We 
find that the elementary excitation energy corresponding to the fan configuration becomes 
negative at a certain wavevector. for h .c h; where hf z h , .  The same occurs for the 
elementary excitation energy of the distorted helix configuration for h 3. h; where h; < h2, 
so that we cannot explore the complete range hl < h c h2 where the coexisting minima 
of the energy are present. Possibly these instabilities are related to the appearance of 
excitations suitable for driving continuously the fan into the helix for h = h; and the 
helix into the fan for h = h;, moving throughout a wider parameter space than the space 
that we are considering. However, our resulls, which work for h; c h < h;, give a 
clear indication that the coexistence curve of the distorted helix and fan configuration is 
asymmetric with respect to a 'critical point' beyond which the distorted helix changes 
continuously into the saturated configuration as the field increases at a fixed temperature. 
We have substantiated this scenario by Monte Carlo simulations (section 3). which show 
that the change in the configuration becomes continuous for a sufficiently high temperature. 
Also the static structure factor shows that a substantial weight transfer from the satellite 
peak at q = Q = ($r. 0) to the central peak occurs in a magnetic field range which suffers 
from a dramatic shrinkage for a sufficiently low temperature. Even though we cannot push 
the Monte Carlo simulation to the lowest temperature to cover the region of temperatures 
(and fields) where the harmonic approKimation is reliable. low-temperature expansion and 
Monte Carlo simulation give complementary and consistent information about the behaviour 
of a helix configuration with a spin-spin turn angle less than $r. We confirm the guess 
[9] based on zero-temperature calculation concerning the dramatic difference between the 
response to the magnetic field for Q < $r and that for Q > fr. 

2. Low-temperature thermodynamics in the harmonic approximation 

The Hamiltonian that we consider is 

where i labels the sites of a square lattice, 6, (a = 1,2,3) is a vector joining the site i with 
its neighbours of the a t h  shell and S; is a two-component classical vector. For simplicity we 
choose S = 1. The zero-field zero-temperature phase diagram of this model consists of four 
phases characterized by Q = (0,O) (F). Q = (n,O) (AF), Q = (cos-'[(l - 2j2)/4j3l,O) 
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( H I )  and Q = (cos-][-l/(Zj~ + 4j~)l,cos-'[-1/(2jz +4js)I) ( ~ 1 ) .  We focus on the 
line j 2  t -'[ 3 3 ( d  - 1) + 1 for 71/(3 + A) < j 3  ,< 0, where Q = (zr, 5 0) at 
zero temperature. We define j z  = Ji/J], j 3  = J~/JI.  An exact low-temperature low- 
field freeenkrgy expansion for a generic helix proves that non analytic contributions lock 
CDmmenSurate configurations when an extemal in-plane magnetic field is applied [l]. For 
this reason we consider a magnetic cell of five spins. The corresponding reduced energy is 

eo=Eo/2J1N = - f { 5 ( 1 +  j3)+(1+2jd[cos(+1 -&)+cos(&-43) 

+ cos(43 - 44) +  cos(^ - $5) + cos(+s - 41 )] + j3[cos(+i - &) 

+ h(cos 41 +COS & 4- COS & +COS 4 4  +COS &)} 
+ cos(& - 4 4 )  + COSC@3 - $5) + COS(+4 - 41) + COS(45 - &)I 

(2.2) 
where h = pH/'LJi, and 4; (i=l, 4) is the angle between the ith spin in the unit cell and 
the extemal magnetic field, as shown in figure I(a). The minimum-energy conditions are 

(1 + 2jz) [sin(+; - 4i+1) + sin(4i -++I)] + j 3  [sin(+; - h + z )  + sin(+i - 4;-2)] 

With i = 1,2, .... 5. One has to replace i f n by i f n 7 5 when i + n > 5 or i - n < 1. 
It can be proven that equation (2.3) is satisfied by the configuration with a spin parallel to 
the field (41 = 0) h d  the remaining four spins forming angles &, 43, -& and -& with 
the field. This is in- the zero-temperature minimum-energy configuration with & and 
43 given by the numerical solution of the minimum-energy conditions (2.3) that reduce to 

sin & [(& - 2) cos & - 2 cos & + & - 1 - h/j3] = & cos & sin & (2 .4~)  

sin 43 [(&-2) cos & + 2 ( & -  1) cos 43 - 1 -h/j3] = & cos & sin 42. (2.4b) 

+ h sin 41 = 0 (2.3) 

P 
P 

I 
B 
d ,  

P 

Figure 1. (a) Unit magnetic cell with five spins; (b) distorted 
helix for h = 0.05; (c) symmetric fan for h = 0.15. 9,  

Figure l(b) and I(c) show typical spin configurations for the distorted helix and the 
symmetric fan, respectively. For vanishing h we give the analytic expressions of & and 43 
that correspond to a weakly distorted helix: 

& = $7 -0.27528(h/lj31) (2.5a) 

43 = $7 -0.170 13(h/lj3l). (2.56) 
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In the neighbourhood of the saturation field h, = ;I j3](3 - &), where the fan configuration 
is stable, one has 

@Z = 0.90579[(hs - h)/lj31]1’z (2.6~~) 

43 =0.55981[(h, -h)/lj31]’”. (2.6b) 

We have verified by careful numerical sampling of the function (2.2) that no other minima 
exist except those given by (24) even if the hypothesis of a symmetric arrangement 
of the spins with respect to the field is abandoned. The solution of these equations 
corresponds to a distorted helix (h i hl = 0.75327lj31) and to a symmetric fan 
configuration h > hz = 1.024731j31). There is a coexistence region corresponding to 
hl e h < hz. The value of h where the zero temperature energies of the two configurations 
are equal is h, = 0.87572(j3\. As for numerical calculations, we focus on j3 = -+ 
for which hl = 0.094 16, h2 = 0.12809, and h, = 0.10946. At finite temperatures we 
allow fluctuations around the minimum-energy configuration and we neglect Hamiltonian 
contributions containing more than two fluctuations, so obtaining 

‘ H = E o + ‘ H z  (2.7) 
where 

where 

is the Fourier transform of +/’ which is the small deviation that the sth spin in the ith 
magnetic cell makes with respect to the minimum energy configuration. The elements A:’ of 
the Hermitian matrix A, are given in the appendix. The reduced free energy f = F/2J, N 
in the harmonic approximation is 

where f = k ~ T / 2 J l .  We stress that the anharmonic contributions that we have neglected 
are of higher order in temperature so that we expect that the harmonic approximation is 
reliable in the low temperature limit. In figure 2 we show the free energy of the helix and 
fan configurations for different temperatures. The zero-temperature energy is double valued 
in the range hi < h e hz, while at finite temperatures the coexistence region is restricted 
to hi e h e h;, where h; = 0.808031j31 and h; = 1.02241lj3I. For j 3  = -$  one has 
h; = 0.101 00 and h; = 0,12780. The fan configuration becomes unstable for h = h; 
because the determinant of A, becomes negative for h < h; owing to the fluctuations in 
the neighbourhood of qr = $7, qy = 0. Indeed we have 

(2.11) 

where CO = 7.9794 x An analogous 
instability occurs for h > hz for the helix configuration at the same wavevector. Note 
that h; is very close to hz so that it is hard to distinguish between them in figure 2. The 
instabilities at h = h; and h = h; indicate that the fan and helix configurations, which 
are metastable for h e h,(f) and for h > h&), respectively, cannot be described by a 

det A, = co(h - h’) + C I ( $ ~  - qJ2 + czq; 

CI = 0.9475 x and cz = 0.2612 x 
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magnetic cell of five spins for h < h; and for h h;, so that our calculations based on 
such a configuration are no longer reliable. It is hard to understand whether the metastable 
fan (helix) survives in an incommensurate form or whether it fails to exist just for h = hi 
(h = h;). We favour the latter hypothesis because the softening of the fan (helix) elementary 
excitations for h = h; (h = h;) suggests the onset of 'dangerous' excitations in a parameter 
space wider than that considered. An analogous scenario was found on the F-AF boundary 
line in the absence of a magnetic field [ 111.  The dangerous excitations could drive the 
fan configuration continuously into the helix configuration for h = h; and vice versa for 
h = hz. We expect that h; and h; would be temperature dependent owing to non-linear 
contributions which are neglected in the harmonic approximation. Moreover, at the critical 
temperature, h;( t ) ,  h;(t), and h,(t) should meet but this feature cannot be obtained within 
our approximation. The harmonic approximation leads to the following expectation value 
of the component along the field of the sth spin of the magnetic cell: 

(cos(& + tp)) = cos ,$s,(cos $LI(I)) (2.12) 

'= -0.05 
i: 
2 

-1,oo 

where 
(cos +:') = exp(-&tIss) 

with 

1 
t.0.042 

t=0.03 - 
1=0.02 

t=o 01 
- - t=o 

- Figure 2. Free energy in the har- 
monic approximation at the reduced m , , , , .  

(2.13) 

(2.14) 

-0 90 i 

The magnetization can be written 

mft)  = t[exp(-iIiit) + 2  cos & exp(-l122t) + 2 cos & e x p ( - i ~ ~ ~ t ) ] .  (2.15) 
The integrals (214) show non-analytic behaviour for vanishing h owing to the long- 
wavelength contribution. Indeed we have 

(2.16) = 2.2767 x 10-4/(0.09245h5 + 2.57 x 10-3g: + 1.36 x 10-3q:) 
which leads to the following result 

I,, = -0.242 In h + regular terms. (2.17) 

m ( t )  N 1.15778h'+0.'21'. (218) 

By putting (2.17) in (2.15) we obtain the low-field behaviour of the magnetization 
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Figure 3. Magnetization per spin in harmonic appmximation at the reduced temperatures i = 0. 
0.01.0.02,0.03 and 0.042. The inset darifies the tempera(ure dependence of the magnetizatian 
in Lhe distorted helix configuration. 

In figure 3 we show the magnetization for selected values of temperature, where the 
occurrence of a first-order phase transition is clearly seen. As figure 2 and figure 3 show, 
the field h,(O at which the phase transition occurs decreases with increasing temperature. 
This temperature dependence can be written as 

The superscripts h and f mean helix and fan, respectively. All quantities tinder integration 
are evaluated at h = h, in order to avoid spurious contributions. Numerical evaluation of 
the integral appearing in equation (2.19) gives 

(2.20) hc(t)  - h, = -0.19961. 

The elementary excitation energies related to the eigenvalues of 4 which are 

h0~;’=2Jih‘~’ ‘I S =  1,2, ..., 5 (2.21) 

are shown in figure 4 in the (1.0) direction for h = 0, 0.321j3(. h, for the: distorted helix. 
In figure 5 we show the elementary excitation energies for the fan configuration in the (1.0) 
direction at h = h,, 1.21j31, h,. 

We have also evaluated ($1,) and (*L) the order paraineten 151 at zero temperature and 
low temperatures, respectively, defined by 

($11) = $[exp(-fflli) + 2 cos @z cos (in) exp(-ilnt) + 2 cos 4 cos ( $ x )  

x ~xP(-+)] (2.22) 

($1) = :[sin $2 sin ($r) exp(-flat) +sin 43 sin (jr) exp(-iI,3t)j. (2.23) 
As one can see in figure 6 the order parameters show clearly the discontinuous helix-fan 
transition at h = h&). Moreover they vanish for h = h,. Note that the temperature 
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h=O h=h, 

%/9m (1.0) 

Figure 4. Dispersion curve in the (1.0) direction at h = 0,0.32Ijil. h, for the helix phase. 

h=h, h=1.21j31 h=h, 

0.5 

%/¶SZ (1.0) 

Figure 5. Dispenion curve in the (1,O) direction at h = h,. 1.21j3l, h, for the fan phase. 

dependence of h, cannot be obtained in the harmonic approximation, because its physical 
origin is the thermal renormalization of the exchange interactions which is beyond the 
present approximation. 

It is interesting to single out the non-analytic low-field behaviour of the order parameters 
caused by the singular behaviour of I,. given in equation (2.17). Indeed we have 

(2.24) 
Note that equation (2.24) satisfies the MermiwWagner theorem [ 121, giving (@!I) = (@l) = 
0 for any finite temperature when h = 0. However, any finite h assures genuine LRO with 
a continuous departure from zero but with an infinite slope of the hdependence. 

($1,) N (@L) N (~)h"'*".  
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I " ' ~ I ' '  ~ I j " '  ' I '  a 

0.3 - 

n,i - 
Figure 6. The order parameters (*I,) (-) 
and WL) (-) at 1 = 0 and ($11) (0) and 

O . O - '  0.05 0.1 0,15 0 2  (el) (x) at t = 0.04 oMained in the harmonic 0 
h approximation. 

" ' 

0.0 1 
t 

" f  L 

. 
t 

0.2 1 

Figure 7. Magnetization venus field 
a5 obtained by Monte Carlo simulation 
in a sqnm lanice of 25x25 spins 
at r = 0.05 (0) and f = 0.2 (+): 
magnetization (-) at f = 0 and 
I = 0.04 obtained by the harmonic 
approximation. 

3. Monte Carlo simulation 

We have explored the intermediate- and high-temperature range by Monte Carlo simulation 
on a finite size sample of 25x25 spins with periodic boundary conditions. Our results 
conceming the magnetization for t = 0.05 and f = 0.2 are shown in figure 7 by open circles 
and crosses, respectively. Note that for fields about h,(t)  and I N 0.05, a larger number of 
Monte Carlo steps is required to reach thermalization (ZOO000 steps against 50000). Any 
discontinuous trend disappears completely for t = 0.2. The dramatic enhancement in the 
thermalization time at about t = 0.05 suggests that critical phenomena are, involved at this 
temperature. The existence of a first-order phase transition found analytically by harmonic 
approximation is supported by the results shown in figure 7. The same indication is obtained 
by the analysis of the static structure factor S(q,, qY),  i.e. the spatial Fourier transform of 
the equal-time spin-spin correlation function. S(qX,  0) at i = 0.05 is shown in figure 8 for 
h = 0.08 and h = 0.09. Note the substantial transfer of weight from the satellite peak at 
qr = )IT to the central peak when the field is slightly changed. 

4. Summary and conclusions 

In this paper we have analysed the behaviour of the planar model in an extemal 
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41 % 

Figure 8. Static smture factor S(q,, 0) as obfained by Monte Carlo simulation in a square 
lattice of 25x25 spins at 1 = 0.05 for h = 0.08 and h = 0.09. 

magnetic field for a square lattice where competing spin-spin interaction produces a helix 
characterized by a tum angle Q = $T at zero field. Our results are relevant to supporting 
the hypothesis that a first-order phase transition from the low-field distorted helix to the 
high-field fan configuration occurs only if Q < !p in agreement with recent arguments 
[8,9] given for zero temperature. In section 2 we perform the harmonic approximation and 
we find that the only commensurate configurations with five spins per magnetic cell are the 
distorted helix and the fan configuration in addition to the saturated paramagnetic phase. 
We find the elementary excitation specr", the magnetization at a finite temperature and 
field, and the order parameters. The harmonic approximation supports the existence of a 
first-order phase transition for a sufficiently low temperature. 

In section 3 we perform Monte Carlo simulations on finite-size samples, and the picture 
that we find at intermediate temperatures is consistent with the analytic results at low 
temperatures given in section 2. At high temperatures, any signal of a discontinuous change 
in the spin configuration is completely absent. 

The overall scenario of the helix with Q = $7 is very different fiom that of the 
helix with Q = 3. extensively studied both analytically and numerically [2,3,5,10]. For 
Q = $I any first order helix-fan phase transition is absent and an intermediate phase with 
two spins parallel and one antiparallel to the field ( ' u p u ~ o w n '  phase) intervenes between 
the low-field and high-field configurations. 

Appendiv 

The elements of the matrix A,, appearing in equation (2.7) are listed below 

A" P = 1 - cos qy + ( I  + 2j2) cos 41 + j,[l - cos(2q,) + cos 4 2 1  + $t (AI) 

A: = 1 -cos qy + ;(I +2jz)[cos(41 - h) +cos $11 + j 3 [  1 -cos(2qY) + A[cos(@1 +&) 

(A21 

A: = 1 -cos qy + $( 1 + 2jz) [cos(41 -h) +cos(2h)] + j 3  [ 1 -cos(2qy) + ;[COS(@I +&) 

(-43) 

+ COS(2@1)]) + $2 cos $41 

+cos 471) + i h  cos $Q 
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